

Economic Aspects/Implications of Risk & Reliability of Coastal Structures on the Great Lakes

Jon Brown
Buffalo District
June 2008

One Team: Relevant, Ready, Responsive, Reliable -

O&M Budget Issues of Great Lakes

- Recent GL O&M budget is flat at best
- GL System O&M needs and expenses are rising
- We now need to demonstrate return on investment to OMB for proposed O&M expenditures
- Incorporate asset management principles considering risk & reliability

Risk Assessment

- Risk assessment is a science-based, systematic process for quantifying and describing the nature, likelihood and magnitude of risk associated with some substance, situation, action or event, including consideration of relevant uncertainties.
 - Adding up the probabilities of possible "bad things" happening multiplied by the \$ value of the corresponding consequence.

One Team: Relevant, Ready, Responsive, Reliable .

Economic Issues of GL Risk & Reliability Overview

Channel depth loss from shoaling

Availabil

Failure of age and attack

Challenge: Aging Infrastructure

- Many navigation structures are greater than 100 years old
- Too few dollars chasing too many needs

Summary of Ave Annual Maintenance – Buffalo District

- About million CY at 10 harbors dredged annually
- Up to 2,000 linear feet of navigation structures repaired by floating plant
- Approx 1 major construction contract let for repairing navigation structures (\$1-3M)

US Army Corps of Engineers.

Budget Wonk Questions

- Is a particular repair or rehabilitation project a good use of federal funds?
- Is the expected value of benefits greater than the cost of repair?
- How can we prioritize all the proposed projects on the list?

- Breakwaters
 - Rubble mound stone
 - Laid up stone
 - Core-Loc
- Jetties/Piers
- CDF's

Consequences of Inadequate Maintenance

- National Economic Impacts
 - Increased transportation costs
 - Increased damages
 - Increased nonfederal maintenance and repair
 - Lost recreation opportunities
- Regional Development Impacts
 - Loss of Jobs
 - Loss of Income
 - Loss of Revenue
- Environmental Consequences
 - Increased Water & Air Pollution
 - Risk to habitat and species

Commodity	Jobs/1000 tons
Steel Products	1.07
Gen Safety - Loss	0.33
grain f l :f a l l l	0.22
iron of Life!!!	0.22
Coal	0.15
Cement	0.21
Aggregates,limestone	0.20
Petroleum	0.30
Others	0.11
Chemicals	0.51
Ores&minerals	0.20

Need to Evaluate in Planning Setting

- Establish Project Evaluation Period
 - (e.g. 50 years, 20 years, etc.)
- Establish Existing & Future WOPC (What is the future if we continue to operate and maintain the projects in the same manner as we have in the past?)
- Establish Existing & Future WPC's

Engineering Inputs

- Probability of failure
- Type of failure, given it failed
- Repair costs
- Time required for repairs
- Effect of repair on future reliability
- Event tree that shows linkages between 1-5.

Reliability

Probability of failure over time.

 Probability of failure in a specific year given it survived to that year – hazard value.

 Developed by BAT Team and Coastal engineering staff based on expert opinion.

Cumulative Distributions Historical and ELS (ERDC)

Water Level, h

Peak Wave Period, Tp

One Team: Relevant, Ready, Responsive, Reliable

Event Tree Analysis

- Event tree analysis is based on binary logic, in which an event either has or has not happened or a component has or has not failed.
- It is valuable in analyzing the consequences arising from a failure or undesired event.

Event Tree

- An Event Tree starts from an undesired initiator (e.g. component failure, etc) and follows possible further system events through to a series of final consequences.
- As each new event is considered, a new node on the tree is added with a split of probabilities of taking either branch.
- The Event Tree is the foundation of a simulation model.
- Developed by BAT Team and Coastal Engineering Staff.

Event Tree for Generic Coastal Structure Link reliability with consequences

<u>Wave Height</u> Exceedance Probability	Probability of Unsatisfactory Performance	Performance Level Probability	Branch Probability	Consequences (\$)
For Frequ Less Dan Ever	naging	Impacts wo Failure (r 99.00%		Harbor Damages (Dooks and Repair & Cleanup Costs Navigation Delay Costs Infrastructure Losses from Erosion and Coastal Storm Damage
5ft 50.00%		Failure (major damaga 1.00%	•	Harbor Damages (Dooks and Repair & Cleanup Costs Navigation Delay Costs Infrastructure Losses from Erosion and Coastal Storm Damage
	Reliability (Satisfactory Performs 99.99964%	ence)	49.99982%	Normal O&M

Event Tree for Generic Coastal Structure Link reliability with consequences

	Frequent but imaging Event	Impacts w/o Failure (minor damage to		Harbor Damages (Docks and Vessels)
	Pr(u) (Unsatisfactory Perf.)		0.00250%	Repair & Cleanup Costs Navigation Delay Costs Infrastructure Losses from Erosion and Coastal Storm
	100.00%			Damage
20 ft 0.01%		Failure (major damage to structure) 75.000%		Harbor Damages (Docks and Vessels) Repair & Cleanup Costs Navigation Delay Costs Infrastructure Losses from Erosion and Coastal Storm Damage
	Reliability (Satisfactory Perf	<u> </u>		
	0.00%	eam: Relevant, Ready, Responsive, Reliable	0.00000%	Normal O&M

Event Tree Possibilities

Degradation Curve

Coastal Structure Degradation Curve

Monte Carlo Simulation Model

- Model duplicates event tree logic fifty times for fifty future years and links what happens in one year with the following year.
- Model generates random numbers to determine the path followed in any one year.
- Model can perform the multi-year simulation a large number of times.
- @Risk_© for Excel_© Model developed by economist in Pittsburgh.

Simulation Process

Simulation – Simulate possi	ble events as depicted in Event Tree
	Event Tree
Life Cycle Analysis – Mu	ultiple Simulations of Event Tree
Event Tree	Event Tree
2009	2058
Iterations – M	ultiple Life Cycle Runs
Life Cycle Analysis - 1	Life Cycle Analysis - 2
Event Tree 2009 2058	Event Tree Tree 2009 2058

Probability of Failure in "Without" Condition (hazard value)

Year	Probability of Failure
• 2009	5%
• 2020	20%
• 2058	50%

Economic Consequences of Failure

Year	<u>Damage</u>
2009	\$100
2020	\$100
2058	\$100

Expected Economic Costs "Without" Condition

Year	Exped	ted Value
2009	5% x	\$100 = \$5
2020	20% x	\$100 = \$20
2058	50% x	\$100 = \$50

Alternatives ("With" Conditions)

1. Major Rehab- Rubblemound Structure

2. Major Repair

Probability of Failure in "With" Condition (hazard values)

Year	Probability of Failure
2009	1%
2020	5%
2058	10%

Economic consequences of Failure

Year	<u>Damage</u>
2009	\$100
2020	\$100
2058	\$100

Expected Economic Costs "Without" Condition

<u>Year</u>	Expected Value
2009	1% x \$100 = \$1
2020	5% x \$100 = \$5
2058	10% x \$100 = \$10

Benefits

<u>Year</u>	"Without"	"With"	<u>Benefit</u>
2009	\$5	\$1	\$4
2020	\$20	\$5	\$15
2058	\$50	\$10	\$40

Annualize Benefits

- Discount value in each year to present value equivalent.
- Sum present value equivalents.
- Amortize cumulative present value which yields the average annual equivalent benefit.

Economic Analysis using Monte Carlo Risk Model

- Simulation starts with first year (under WOPC).
- Simulation continues for each year in PEP.
- Computer stores results for this iteration.
- Process continues for several iterations.
- Maybe do for "with", depending if fix does not make project completely reliable.
- Subtract residual damages under "WPC" from those of "WOPC" to compute benefits.
- Compare benefits with costs to determine net Benefits and BCR.

Economic Consequences How to get good data?

- By Harbor, Develop Threshold Wave Height -Delay by Vessel Relationship
- Conduct Shipper Response Surveys
- Estimate Induced Shoreline Maintenance Under Disrepair Scenarios
- Develop Erosion Rates

GL Vessel Operating Costs

Hourly Delay Costs

|--|

- Class 5 (600-649 ft) \$1,974
- Class 7 (700-730 ft) \$2,086
- Class 10 (950-1,099 ft) \$2,939

*FY08 Price Level

Measuring Economic Consequences

US Army Corps of Engineers.

 As a proxy for potential infrastructure coastal damage, use revetment cost for linear reach affected by breakwater breach

 Linear feet of unprotected shoreline times \$ / ft of revetment cost

Breach from Storm Event

Other Consequences

- Breakwater Damage Cleanup Cost
- Repair Cost (Fix as Fails)
- Damage to boats, docks, and other shoreline infrastructure
- Increased Shoaling (Dredging Requirement)

Evaluating Coastal Structures: Problems & Needs

- Insufficient data to make informed decisions
 - Physical Cause/Effect & Probability of Occurring
 - Economic Response & Measurement
- Refine tools for measuring impacts
 - Risk Analysis Model

Consequence of High Risk Level

- Increased transportation costs
- Loss of industry, jobs and revenue
- Shift from waterborne to landbased transportation

Increased air pollution & rail &

highway accidents

Huge Complex Effort

- Improving the level of data available
- Developing assessment metrics
- Develop evaluation methods
- Develop computer models
- Develop Nontraditional benefits

